题目描述
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
示例 1:
输入: [3,2,3] 输出: 3
示例 2:
输入: [2,2,1,1,1,2,2] 输出: 2
https://leetcode-cn.com/problems/majority-element/
解法1
使用Map统计每个数出现的频率,当发现元素e出现的频率超过⌊ n/2 ⌋时,返回元素e。时间复杂度与空间复杂度均为O(n)
解法2
对数组排序,然后返回中间元素。因为元素e超过了⌊ n/2 ⌋,那么排序后数组的中间位置已定是元素e。时间复杂度O(nlogn),空间复杂度O(1)
解法3
该方法被称为Boyer-Moore majority vote algorithm。设置变量majority与counter。依次遍历每个元素e,当计数器counter为0时,将e赋给majority,设置counter为1;此后的循环,当发现e==majority时,counter自增1;当发现e!=majority时,counter自减1。
该算法执行完毕时,若存在频率高于⌊ n/2 ⌋的元素,则majority存放的就是答案。如果不存在频率高于⌊ n/2 ⌋的元素,则该算法并不能识别出这种情况。需要再次扫描统计majority出现的频率。
但是本题给定了说明一定存在众数,我们就只需要扫描一次然后返回majority变量即可。全部代码如下。
class Solution {
public int majorityElement(int[] nums) {
int majority = 0;
int counter = 0;
// https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_majority_vote_algorithm
for (int num : nums) {
if (num == majority)
counter++;
else if (counter == 0) {
majority = num;
counter = 1;
} else
counter--;
}
return majority;
}
}